Portions of this work are from the book, Real-Time Collision Detection,
by Christer Ericson, published by Morgan Kaufmann Publishers,
Copyright 2005 Elsevier. All rights reserved.

The Gilbert-Johnson-Keerthi algorithm

Christer Ericson
Sony Computer Entertainment America

1 Introduction

One of the most effective methods for determining intersection between two
polyhedra is an iterative algorithm due to Gilbert, Johnson, and Keerthi, com-
monly referred to as the GJK algorithm [Gilbert88]. As originally described,
GJK is a simplex-based descent algorithm that, given two sets of vertices as in-
puts, finds the Euclidean distance (and closest points) between the convex hulls
of these sets. In a generalized form, the GJK algorithm can also be applied to
arbitrary convex point sets, not just polyhedra [Gilbert90]. While the examples
presented here are in terms of polytopes, the described algorithm is the gener-
alized version and it applies to non-polygonal convex sets in a straightforward
way. For more detail on the GJK algorithm than presented here, please consult
[Ericson] or [Bergen03].

2 Preliminaries

While the original presentation of the GJK algorithm is quite technical, neither
the algorithm itself nor its implementation are very complicated in practice.
However, understanding of the algorithm does require the introduction of some
concepts from convex analysis and the theory of convex sets on which the algo-
rithm relies.

An important point is that the GJK algorithm does not actually operate
on the two input objects per se, but on the Minkowski difference between the
objects. This transformation of the problem reduces the problem from finding
the distance between two convex sets to that of finding the distance between
the origin and a single convex set. The GJK algorithm searches the Minkowski
difference object iteratively, a subvolume at a time, each such volume being
a simplex. The Minkowski difference is not explicitly computed but sampled
through a support mapping function on demand. The concepts of Minkowski

difference, simplices, and support mapping are described in more detail in the
following three sections.

2.1 Minkowski sums and differences

Two operations on convex sets important for the understanding of the GJK al-
gorithm are the Minkowski sum and the Minkowski difference of point sets. Let
A and B be two point sets and let a and b be the position vectors corresponding
to pairs of points in A and B. The Minkowski sum, A & B is then defined as
the set:

AeoB={a+b:ac A be B}

where a + b is the vector sum of the position vectors a and b. Visually the
Minkowski sum can be seen as the region swept by A translated to every point
in B (or vice versa). An illustration of the Minkowski sum is given in Figure 1.

~ A®B
/

Figure 1: The Minkowski sum of a square A and a triangle B.

The Minkowski difference of two point sets A and B is defined analogously
to the Minkowski sum:

AeoB={a—b:ac A be B}

Geometrically, the Minkowski difference is obtained by adding A to the re-
flection of B about the origin, that is, A© B = A& (—B) (Figure 2). For this
reason, both terms are often simply referred to as the Minkowski sum. For two
convex polygons, P and @, the Minkowski sum R = P & @ has the properties
that R is a convex polygon and the vertices of R are sums of vertices of P and
. The Minkowski sum of two convex polyhedra is a convex polyhedron, with
corresponding properties.

The Minkowski difference is important from a collision detection perspective
as two point sets A and B collide (that is, have one or more points in common)

_ A®(-B)

Figure 2: Since rectangle A and triangle B intersect, the origin must be con-
tained in their Minkowski difference.

if and only if their Minkowski difference C', C' = A © B, contains the origin
(c.f. Figure 2). In fact, it is possible to establish an even stronger result:
computing the minimum distance between A and B is equivalent to computing
the minimum distance between C' and the origin. This follows since:

distance(A,B) = min{|la—Dbl|/:a€ A,b € B}
min {||c|| : ¢ € A© B}

Note that the Minkowski difference of two convex sets is also a convex set,
S0 its point of minimum norm is unique.

2.2 Simplices

A d-simplex is the convex hull of d+1 affinely independent points in d-dimensional
space. A simplex (plural simplices) is a d-simplex, for some given d. For ex-
ample, the 0-simplex is a point, the 1-simplex is a line segment, the 2-simplex
is a triangle and the 3-simplex is a tetrahedron (Figure 3). A simplex has the
property that removing a point from its defining set reduces the dimensionality
of the simplex by one.

2.3 Supporting points and support mappings

For a general convex set C' (thus not necessarily a polytope) a point from the
set most distant along a given direction is called a supporting point of C. More
specifically, P is a supporting point of C if, for a given direction d it holds
that d - P = max{d -V : V € C}; that is, P is a point for which d - P is
maximal. Figure 4 illustrates the supporting points for two different convex

° I

0-simplex 1-simplex 2-simplex 3-simplex

Figure 3: Simplices of dimension 0 through 3: a point, a line segment, a triangle,
and a tetrahedron.

sets. Supporting points are sometimes called extreme points. They are not
necessarily unique. For a polytope, one of its vertices can always be selected as
a supporting point for a given direction. When a supporting point is a vertex,
the point is commonly called a supporting vertex.

Zf:%@

(@) (b)

Figure 4: (a) A supporting vertex P of polygon C with respect to the direction
d. (b) A supporting point P of circle C with respect to the direction d. In both
cases, P is given by the support mapping function S¢(d).

A support mapping is a function, S (d), associated with a convex set C' that
maps the direction d into a supporting point of C'. For simple convex shapes,
such as spheres, boxes, cones, and cylinders, support mappings can be given in
closed form. For example, for a sphere C' centered at O and with a radius of
r, the support mapping is given by Sc(d) = O + rd/||d|| (c.f. Figure 4(b)).
Convex shapes of higher complexity require the support mapping function to
determine a supporting point using numerical methods.

For a polytope of n vertices, a supporting vertex is trivially found in O(n)
time by searching over all vertices. Assuming a data structure listing all adjacent
vertex neighbors for each vertex, an extreme vertex can be found through a
simple hill-climbing algorithm, greedily visiting more and more extreme vertices
until no vertex more extreme can be found. This approach is very efficient as it
only explores a small corridor of vertices as it moves towards the extreme vertex.
For larger polyhedra, the hill-climbing can be sped up by adding one or more

artificial neighbors to the adjacency list for a vertex. Through precomputation of
a hierarchical representation of the vertices, it is possible to locate a supporting
point in O(logn) time. These acceleration schemes are described in more detail
in [Ericson)].

3 The Gilbert-Johnson-Keerthi algorithm

As mentioned earlier, the GJK algorithm effectively determines intersection
between polyhedra by computing the Euclidean distance between them. The
algorithm is based on the fact that the separation distance between two poly-
hedra A and B is equivalent to the shortest distance between their Minkowski
difference C, C = A & B, and the origin (Figure 5). Thus, the problem is
reduced to that of finding the point on C closest to the origin. At the outset,
this does not seem like much of an improvement as the Minkowski difference is
non-trivial to compute explicitly. However, a key point of the GJK algorithm is
that it does not explicitly compute the Minkowski difference C. It only samples
the Minkowski difference point set using a support mapping of C' = A & B.
Since the support mapping function is the maximum over a linear function, the
support mapping for C, sacp(d), can be expressed in terms of the support
mappings for A and B as sacp(d) = s4 (d) — sp(—d). Thus, points from the
Minkowski difference can be computed, on demand, from supporting points of
the individual polyhedra A and B.

PN

J/
i S Al

{é/

T

Figure 5: The distance between A and B is equivalent to the distance between
their Minkowski difference and the origin.

To search the Minkowski difference C for the point closest the origin, the
GJK algorithm utilizes a result known as Carathéodory’s theorem [Rockafellar96].
The theorem says that for a convex body H of R¢, each point of H can be ex-
pressed as the convex combination of no more than d + 1 points from H. This
allows the GJK algorithm to search the volume of the Minkowski difference C'

by maintaining a set @ of up to d+ 1 points from C' at each iteration. The con-
vex hull of @ forms a simplex inside C'. If the origin is contained in the current
simplex, A and B are intersecting, and the algorithm stops. Otherwise, the set
Q is updated to form a new simplex, guaranteed to contain points closer to the
origin than the current simplex. Eventually this process must terminate with a
@ containing the closest point to the origin. In the non-intersecting case, the
smallest distance between A and B is realized by the point of minimum norm
in CH(Q) (the convex hull of Q). The following step-by-step description of the
GJK algorithm specifies in more detail how the set @ is updated:

1. Initialize the simplex set () to one or more points (up to d + 1 points,
where d is the dimension) from the Minkowski difference of A and B.

2. Compute the point P of minimum norm in CH (Q).

3. If P is the origin itself, the origin is clearly contained in the Minkowski
difference of A and B. Stop and return A and B as intersecting.

4. Reduce Q to the smallest subset Q' of @ such that P € CH(Q'). That is,
remove any points from @ not determining the subsimplex of @) in which
P lies.

5. Let V = sacp(—P) = sa(—P) — sp(P) be a supporting point in direction
—P.

6. If V is no more extremal in direction —P than P itself, stop and return A
and B as not intersecting. The length of the vector from the origin to P
is the separation distance of A and B.

7. Add V to @ and go to 2.

Figure 6 illustrates how GJK iteratively finds the point on a polygon closest
to the origin O for a two-dimensional problem. The algorithm arbitrarily starts
with the vertex A as the initial simplex set @, @ = {A}. For a single-vertex
simplex, the vertex itself is the closest point to the origin. Searching for the
supporting vertex in direction —A results in B. B is added to the simplex set,
giving @ = {4, B}. The point on CH(Q) closest to the origin is C. Since both
A and B are needed to express C' as a convex combination, both are kept in
Q. D is the supporting vertex in direction —C' and it is added to @, giving
Q = {A, B, D}. The closest point on CH(Q) to the origin is now E. Since only
B and D are needed to express E as a convex combination of vertices in @, @
is updated to @ = {B, D}. The supporting vertex in direction —FE is F', which
is added to @. The point on CH(Q) closest to the origin is now G. D and F' is
the smallest set of vertices in () needed to express G as a convex combination,
so @ is updated to @ = {D, F'}. At this point, since no vertex is closer to the
origin in direction —G than G itself, G must be the closest point to the origin,
and the algorithm terminates.

Note that the GJK algorithm trivially deals with spherically extended poly-
hedra, simply by comparing the computed distance between the inner polyhedral

D
R
F
B

Figure 6: GJK finding the point on a polygon closest to the origin.

structures with the sum of the radii of the spherical extensions. Note also that
if the GJK algorithm is applied to the vertex sets of nonconvex polyhedra, it
will compute the smallest distance between the convex hulls of these nonconvex
polyhedra.

While presented here as a method operating on polyhedra only, the GJK
algorithm can, in fact, be applied to arbitrary convex bodies. Since the input
bodies are only ever sampled through their support mappings, all that is required
to allow the GJK algorithm to work with general convex objects is to supply
appropriate support mappings.

The GJK algorithm terminates with the separation distance in a finite num-
ber of steps for polyhedra. However, it only asymptotically converges to the
separation distance for arbitrary convex bodies. Therefore, a suitable toler-
ance should be added to the termination condition to allow the algorithm to
terminate correctly when operating on non-polyhedral objects.

On termination with non-intersection, in addition to returning the separation
distance, it is possible to have GJK compute the closest points between the input
objects, computed from the points of objects A and B that formed the points
in the last copy of simplex set (). The steps of this computation are beyond the
scope of these notes, see [Ericson] for full details.

3.1 Finding the point of minimum norm in a simplex

It remains to describe how to determine the point P of minimum norm in CH(Q)
for a simplex set Q = {Q1,Q2,...,Qk}, 1 <k < 4. In the original presentation
of GJK, this is done through a single procedure called the distance subalgorithm.
The distance subalgorithm reduces the problem to considering all subsets of @
separately. For example, for k¥ = 4 there are 15 subsets corresponding to 4
vertices (Q1, Q2, @3, Q4), 6 edges (Q1Q2, Q1Q3, Q1Q4, Q2Q3, Q2Q4, Q3Q4),

4 faces (Q1Q2Qs3, Q1Q2Q4, Q1Q3Q4, Q2Q3Q4), and the interior of the simplex
(Q1Q20Q3Q4). The subsets are searched one by one, in order of increasing size.

The search stops when the origin is contained in the Voronoi region of the
feature (vertex, edge, or face) specified by the examined subset (or, for the
subset corresponding to the interior of the simplex, when the origin is inside the
simplex). Once a feature has been located, the point of minimum norm on this
feature is given by the orthogonal projection of the origin onto the feature.

The Voronoi region for a feature F' is the region of space containing points
that lie closer to (or as close to) F' than to any other feature. Figure 7 illustrates
the Voronoi regions determined by the features of a triangle.

Consider again the case of Q@ = {Q1,Q2,Qs,Q4}. An arbitrary point P
(specifically the origin) lies in the Voronoi region for, say, vertex @ if and only
if the following inequalities are satisfied:

(P—Q1) (Q2—Q1) <0
(P—Q1) (Q3—Q1) <0
(P—Q1) (Qs—Q1) L0

Figure 7: A triangle divides its supporting plane into 7 Voronoi feature regions:
1 face region (F), 3 edge regions (E1, E2, E3), and 3 vertex regions (V1, Vs, V3).

P lies in the Voronoi region associated with edge QQ1Q- if and only if the fol-
lowing inequalities are satisfied:

(P=Q1) (Q2—Q1) >0
(P=Q2) (Q1—Q2) >0
(P—=Q1)-((Q2 — Q1) xmiz3) >0
(P—Q1) (na2 x (Q2— Q1)) >0

where:

np3 = (Q2 — Q1) x (Q3 — Q1)
nie = (Qs — Q1) x (Q2 — Q1)

If P does not lie in a vertex or edge Voronoi region, face regions are tested by
checking if P and the remaining point from @ set lie on opposite sides of the
plane through the three chosen points from () to form the face. For example,
P lies in the Voronoi region of Q1Q2@Q3 if and only if the following inequality
holds:

(P —=Q1) m23)((Qs — Q1) -my23) <0

where again:

N3 = (Q2 — Q1) x (@3 — Q1)

Analogous sets of inequalities can be defined for testing containment in the
remaining vertex, edge, and face Voronoi regions. Note that most of the com-
puted quantities are shared between different Voronoi region tests and need not
be recomputed, resulting in an efficient test overall. Simplex sets of fewer than
four points are handled in a corresponding way.

4 GJK for moving objects

While the GJK algorithm is usually presented and thought of as operating on
two convex polyhedra, it is more general than so. Given two point sets, it
computes the minimum distance vector between the convex hulls of the point
sets (an easy way of seeing this is to note that the support mapping function
never returns a point interior to the hull). This is an important distinction as
it allows GJK to be used to determine collisions between convex objects under
linear translational motion in a straightforward manner.

One approach to dealing with moving polyhedra is presented in [Xavier97].
Consider two polyhedra P and @), with movements given by the vectors t; and
to, respectively. To simplify the collision test, the problem is recast so @ is
stationary. The relative movement of P (with respect to @) is now given by
t = t; — t2. Let V; be the vertices of P in its initial position. V; + t describes
the location of the vertices of P at the end of its translational motion.

Figure 8: For a convex polyhedron under a translational movement t, the convex
hull of the vertices V; at the start and the vertices V; + t at the end of motion
corresponds to the swept hull for the polyhedron.

It is not hard to see that as P moves from start to end over its range
of motion, the volume swept out by P corresponds to the convex hull of its
vertices at their initial and final positions (Figure 8). Determining if P collides
with) during its translational motion is therefore as simple as passing GJK the
vertices of P at both start and end of P’s motion (since this convex hull is what
GJK effectively computes, given these two point sets). A drawback with this
solution is that doubling the number of vertices for P increases the time to find a
supporting vertex. A better approach, which does not suffer from this problem,
is to consider the movement vector t of P with respect to d, the vector for which
an extreme vertex is sought. From the definition of the extreme vertex it is easy
to see that when t is pointing away from d, none of the vertices V; 4+ t can be
more extreme than the vertices V;. Thus, when d -t < 0, an extreme vertex is
guaranteed to be found amongst the vertices V; (Figure 9(a)). Similarly, when

10

d -t > 0, only the vertices V; + t need to be considered for locating an extreme
vertex (Figure 9(b)).

Figure 9: (a) When d-t < 0, the supporting vertex is found amongst the original
vertices V; and the vertices V; +t do not have to be tested. (b) Similarly, when
d -t > 0, only the vertices V; 4+ t have to be considered.

The second of two presented approaches is effectively implemented by chang-
ing the support mapping function such that the motion vector is added to the
vertices during hill-climbing.

A drawback is that both presented methods only provide interference de-
tection. However, interval halving can be effectively used to get the time of
collision. Using an interval halving approach, the simplices from the previous
iteration are ideal candidates for starting the next iteration. Alternatively, the
time of collision can be obtained iteratively using a root finder such as Brent’s
method, as described in [Vlack01].

References

[Bergen03] van den Bergen, Gino. Collision detection in interactive 3d en-
vironments. Morgan Kaufmann Publishers, 2003.

[Ericson] Ericson, Christer. Real-Time collision detection. Morgan Kauf-
mann Publishers. Forthcoming.

[Gilbert88] Gilbert, Elmer. Daniel Johnson, S. Sathiya Keerthi. “A fast pro-
cedure for computing the distance between complex objects in
three dimensional space.” IEEE Journal of Robotics and Au-
tomation, vol.4, no. 2, pp. 193-203, 1988.

[Gilbert90] Gilbert, Elmer. Chek-Peng Foo. “Computing the Distance Be-
tween General Convex Objects in Three-Dimensional Space.”
IEEE Transactions on Robotics and Automation, vol. 6, no. 1,
pp. 53-61, 1990.

[Rockafellar96] Rockafellar, R. Tyrell. Convez Analysis. Princeton University
Press, 1996.

11

[Vlack01]

[Xavier97]

Vlack, Kevin. Susumu Tachi. “Fast and accurate spacio-
temporal intersection detection with the GJK algorithm.”
Proceedings of the International Conference on Artificial
Reality and Telezistence (ICAT2001), pp. 79-84, 2001.
http://vrsj.t.u-tokyo.ac.jp/ic-at/papers/01079.pdf

Xavier, Patrick. “Fast swept-volume distance for robust collision
detection.” Proceedings of the 1997 IEEE International Con-
ference on Robotics and Automation, Albuquerque, NM, April
1997.

12

